

DTU

26 October 2020 DTU Energy

Peter Holtappels, Christos Chatzichristodoulou

Hydrogen at Scale Key items for R&D&I in electrolysis?

Elect	trolytes						
No.	Parameter	Unit	Applicable technology (e.g. PEMFC, SOEC, AEC, etc.)	Applicable conditions (e.g. T, J, #cycles, …)	SoA 2018	Target 2030	Corresponding FCH JU MAWP KPIs (e.g. A.1.1 no.1)
8	Increase of performance through the adoption of innovative binders	%	Low-temperature FC & Electrolyser technologies		Reference	>25%	A.1.8 no.4 ,5 A.1.9 no. 7,8
• SOEC – Elec	•	ed des	signs help $ ightarrow$ the	rmoneutra	l conditic	ns?	
– Elec	trolyte support		signs help $ ightarrow$ the			ns?	
- Elec • AEC: •	trolyte support electrolytes for ner more robus	gas di t diapł	iffusion electrode	e concepts		ns?	
 – Election • AEC: etc. – thinn – Anico • AEC at – hybr 	trolyte support electrolytes for ner more robus on conducting r dvanced rid immobilized	gas di t diaph nembr aqueo	iffusion electrode nragms anes → Low TR	e concepts L	?	ns?	
 Election AEC: etc. thing AEC at a structure AEC at a structure hybrit structure Science 	trolyte support electrolytes for ner more robus on conducting r dvanced did immobilized cale-up of cera	gas di t diapl nembr aqueo nic se	iffusion electrode nragms anes → Low TR	e concepts L → very low	?	ns?	

		and	d Cataly	313			
No.	Parameter	Unit	Applicable technology (e.g. PEMFC. SOEC)	Applicable conditions (e.g. T, J. #cvcles)	SoA 2018	Target 2030	Corresponding FCH JU MAWP KPIs (e.g. A.1.1 no.1)
1	Area-Specific Resistance	Ωcm ²	All cell technologies	At respective operation temperature	0.25	<0.1	A.1.8 no.1,5 A.1.9 no.1,8 A.1.10 no.1
2	Current density	A/cm ²	Fuel Cell	At respective operation temperature, 50 mV overpotential (FC anode) 100 mV (FC cathode)	0.3	0.8	A1.13 no.6 A1.14 no.6 A1.15 no.6
			Electrolysis	100 mV (cathode) 200 mV (anode)	0.6	>1	A.1.8 no.4 A.1.9 no.7 A.1.10 no.7
3	Catalysts/electrod e durability	hours	All cell technologies	Under relevant operation conditions	5000- 10000	>40000	A.1.8 no.4, 3 A.1.9 no.7, 3 A.1.10 no.7, 4
4	Precious metal loading	mg/cm ²	PEM fuel cells/electrolyzers	Under relevant operation conditions	0.25	<0.1	A.1.9 no.9
5	Sulfur Tolerance of Anodes	ppm	SOFC	700°C-900°C	0 ppm for Ni-YSZ	10	A.1.13 no.4,5,8
6	Redox cycling ability	No.	SOFC	600-900 C	10	>100	A.1.13 no.4,5,8
7	Carbon Tolerant fuel electrodes for co-electrolysis (ASR)	Ω.cm²	SOE	700°C-900°C P =1- 10 bar	>1	0,1	A.1.10 no. 4

DTU

Stack materials & design

No.	Parameter	Unit	Applicable technology (e.g. PEMFC, SOEC,)	Applicable conditions (e.g. T, J, #cycles, …)	SoA 2018	Target 2030
3	Interconnect lifetime	hours	PEMFC,PEMEC,AEC			>40 000
4	Interconnect cost target	€/kW	PEMFC,PEMEC,AEC			<3
5	Electrical conductivity	S/cm	PEMFC,PEMEC,AEC			>100
6	Interconnect lifetime	hours	SOFC, SOEC		40k	>100k
7	Interconnect (w/o Cr-barrier layer) cost target	€/kW	SOFC (for SOEC, divide by 3)	Small series	1300-1800	<300
8	Cost target Cr-barrier coating	€/kW	SOFC (for SOEC, divide by 3)		1050	30
8a	Cost target Cr-barrier coating	€/kW	SOFC (for SOEC, divide by 3)	MCF by APS	1050	120
9	ASR of Protective coating for the interconnect at the Fuel Side	mΩ.cm ²	SOE (steam electrolysis)	700°C – 750°C (ASC) 800°C -900°C (ESC) Steady state	-	<10
0	ASR of Anti coking protective coatings for the interconnect at the fuel side	mΩ.cm ²	SOE co-electrolysis	700°C – 750°C (ASC) 800°C -900°C (ESC) Steady state	-	<10
2	SOFC sealing life time	Thermal cycles	SOFC, SOEC	Ambient – 700°C	<100	200-1000 (TBD, 2 different inputs provided)
3	Cost of stack sealant	€/kW	SOFC (for SOEC, divide by 3 to 4)	Small series production	500	45
4	Cost of electrode contact material	€/kW	SOFC (for SOEC, divide by 3 to 4)	Mesh of Nickel wire	70	5
5	ASR of electrode-contact-laver	mOhm/cm ²	SOFC, SOEC	At xxx°C	40	20

3	ystems						
No.	Parameter	Unit	Applicable technology (e.g. PEMFC, SOEC,)	Applicable conditions (e.g. T, J, #cycles,)	SoA 2018	Target 2030	Corresponding FCH JU MAWP KPIs (e.g. A.1.1 no.1)
			Balance of Plant (BoP)				
1	Corrosion rate	µA/cm²	BoP parts in alkaline or acidic media	n.a.		< 0.1	A.1.8-9 no.3 (O&M) A.1.13-15 no.5 (MTBF)
	Oxidation mass gain	mg/1000 hrs	Steel components in HT systems	Operating conditions		< 0.2	A.1.10 no.4 (O&M) A.1.13-15 no.5 (MTBF)
2	Cost of materials	€/kg	All BoP parts	n.a.		< 5	A.1.8-9 no.2 (CAPEX) A.1.10 no.3 (CAPEX) A.1.13-15 no.1 (CAPEX)
3	Cumulative Cr evaporation from BOP parts	kg/m ² for 1000 hrs	Steel components in HT systems	n.a.		< 0.0002	A.1.13-15 no.2 (Lifetime)
4	Coating resistance	hrs	Heat exchangers	n.a.		> 40kh	A.1.13-15 no.5 (MTBF)
5	Coating costs	€/m²	Coatings and linings for corrosion resistance in alkaline and acidic media in BoP	n.a.		< 700	A.1.8-9 no.2 (CAPEX) A.1.10 no.3 (CAPEX) A.1.13-15 no.1 (CAPEX)
6	Influence of coating on funtional properties of the parts	%	Coatings and linings for corrosion resistance in alkaline and acidic media in BoP	n.a.		< 10	A.1.8 no.1 A.1.9 no.1 A.1.13 no.6, A.1.14 no.6, 7 A.1.15 no.6, 7
7	Degradation	%	Catalysts/support for reforming and POX	n.a.		< 10	A.1.13-15 no.2 (Lifetime)
			BoP integrati	on			
8	BoP Cost	€/kW	Total system, All FC & electrolyser technologies	n.a.		< 400	A.1.8 no.2 A.1.9 no.2 A.1.10 no.3 A.1.13 no.1 A.1.14 no.1 A.1.15 no.1
9	Footprint reduction	%	Total system, All FC & electrolyser technologies	n.a.		> 15	A.1.9 no.6
10	System efficiency gain	%	Total system, All FC & electrolyser technologies	n.a.		> 3	A.1.8 no.1 A.1.9 no.1 A.1.13 no.6,7 A.1.14 no.6, 7 A.1.15 no.6, 7

