Interdependencies in the Development of Hydrogen and CCS Infrastructure

Source: ACOShip Proposal / http://ec.europa.eu/energy/infrastructure/transparency_platform/map-viewer/main.html

EERA-CCS Subproject Transport

Steering Committee Meeting EERA-FCH – October 28, 2020

The Joint Project EERA-CCS

- 26 full participants, 9 associated partners
- See: <u>https://www.eera-set.eu/component/projects/projects.html?id=41</u>
- Coordinator: Marie Bysveen, SINTEF (<u>Marie.Bysveen@sintef.no</u>)
- Administrative Manager: An Hilmo, SINTEF (<u>An.Hilmo@sintef.no</u>)
- SP1 CO₂ Capture: Jan Hopman, TNO (<u>jan.hopman@tno.nl</u>)
- SP2 CO₂ Storage: Jonathan Pearce, BGS (<u>impe@bgs.ac.uk</u>)
- SP3 CO₂ Transport: Roland Span, RUB (<u>roland.span@thermo.rub.de</u>)
- SP4 Communication and Outreach: Hannah Chalmers, UKERC / UoE (<u>hannah.chalmers@ed.ac.uk</u>)

R. Span, 28.10.2020 - Slide 2

Blue Hydrogen as a Bridging Technology

- To establish a hydrogen infrastructure and hydrogen based processes in industry based on fluctuating (and initially limited) hydrogen supply is difficult
- From beginning on requirements on hydrogen storage
- H H
- In Germany different projects aim at electrolytic hydrogen generation from grid power
 ⇒ mitigation effect questionable
- Hydrogen synthesis from natural gas in combination with CCS is a promising bridging technology
- Once hydrogen infrastructure and applications are established, the replacement of blue hydrogen by green hydrogen is entirely flexible
- Different European projects aim at the introduction of blue hydrogen

Blue Hydrogen as a Bridging Technology – ELEGANCY

- ELEGANCY Enabling the Low Carbon Economy by Hydrogen and CCS
- Multinational project in the EERA-ACT program
- Scenario: Hydrogen is generated from natural gas with CCS, hydrogen is

Case studies incl. social acceptance, environm UK (Leeds & Aberdeen), Netherlands (Rotterda Switzerland (decarbonisation of transport sect	nental aspects and CCS/H ₂ market considerations: am), Norway (full scale CCS chain and offshore activities), cor), Germany (centralized and decentralized
decarbonization)	WP5
H ₂ -CCS chain tool and evaluation methodolog (ICL, SINTEF, PSI, RUB, TNO)	ies for integrated chains: WP4
Business case development: (Arntzen de Besche, FirstClimate, Sustainable E	Decisions) WP3
H_2 supply chain including H_2/CO_2 separation WP1	CO ₂ transport, injection and storage WP2
 H₂ from natural gas (Casale, ETH, PSI) H₂ from other sources (ECN) Characterization of CO₂/CO/H₂ mixtures (RUB) 	 CO₂ pipeline transport (SINTEF) CO₂ transport – injection interface (SINTEF) Site selection for storage (ICL, BGS, ETH) Intermittent supply (BGS) Optimizing capacity (BGS, ETH) De-risking storage (ICL, BGS, ETH)
(SINTEF)	WP6

CCS - Carbon Capture and Storage

ELEGANCY – the German Case Study

Slide 5

• Hydrogen is supplied by Norway, generated from reforming natural gas with

Option 1 – Carbon capture & transport

Large CO₂ point sources are being decarbonised, the captured CO₂ is transported via a new CO₂ transport infrastructure to a storage site abroad.

Option 2 – H₂ Admixture

Natural gas is decarbonised at the point of production, hydrogen is imported to Germany and admixed into the existing natural gas grid.

Option 3 – H₂ **Network**

Clean hydrogen is imported as in option 2 and distributed to the end-users via a new H₂ transport infrastructure.

für Wirtschaft und Energie

R. Span, 28.10.2020

ELEGANCY – the German Case Study

 Hydrogen is supplied by Norway, generated from reforming natural gas with CCS

Technical approach:

- Aim: evaluation of the three infrastructure options in terms of their CO₂ reduction potential and abatement costs, on which basis a best case scenario could be designed
- Approach: GIS-based model for the three infrastructure options, consisting of future framework conditions and specific data on the H₂/CO₂ sites under consideration. The infrastructure is planned based on the routing of the natural gas network.

Sociological approach:

- Aim: to identify chances and risks for public acceptance of the options and to work out possible approaches to their implementation
- Approach: mixed-methods-design including interviews with stakeholders and quantitative online survey
- Focus: state of awareness and knowledge, technology perception/evaluation, factors influencing the acceptance

Macroeconomic approach:

- Aim: to assess the conditions that foster or hinder the transition towards a low-carbon economy by evaluating the different infrastructure options
- Approach: stakeholder-centred economic analysis that provides macroeconomic descriptive scenarios for decision making
- Criterion for evaluating the infrastructure options:
 political and economical realisability

Legal approach:

- Aim: regulatory framework relevant for infrastructure options (restrictions, costs, barriers, support) in current law and in legal perspective
- Approach: analysis of existing law; systematic lines and legal constraints for further development
- Focal points: special rules for H₂ and CO₂ transport; reuse of existing infrastructure; cross border frictions

Thinking Further ...

- Natural gas is supplied by Norway,
 decarbonization takes place close to shore in
 Germany
- CO₂ is shipped to platforms in the North Sea for offshore storage

Advantages are:

- Natural gas pipeline can still be used for natural gas, a part flow is decarbonized in the beginning
- Infrastructure hubs can be build close to sites where large scale excess power / water hydrolysis is expected in future

Thinking Further – Interactions of Blue and Green Hydrogen

- To compensate for fluctuations in green hydrogen production, blue hydrogen production needs to become flexible
- What are realistic gradients, current demands, and future developments?
- Where should hubs be located, how do we dimension hubs / grids to balance initial investments and future requirements on growth?
- Where is the economic optimum between H₂ storage and flexibility / scale of blue H₂ production for different H₂-coverage scenarios?
- Requirements on H₂ purity impurities in green and blue H₂ are different
- Optimization of H₂ processing upfront of pipeline or upfront of sensitive

For CO_2 / H_2 transport we can already point out synergies and competition between CCUS and H_2 in more detail!

Joint Working Group Transport by EERA-CCS and ZEP

- Initiative by Filip Neele on behalf of ZEP (Zero Emission Platform)
- Development of a status report on CO₂ transport, four to five pages
- Focus in particular on transport networks
- Haroun Mahgerefteh (UCL, ZEP) and Roland Span (RUB, EERA-CCS) as co-chairs
- Formation of a working group including experts from different areas, from academia and industry
- First meeting in October 2019, multiple Skype conferences until April 2020
- Release of the report in June 2020

Joint Working Group Transport by EERA-CCS and ZEP

 From point to point (source to sink) to industrial networks – increasing complexity of CO₂- / CCUS-transport solutions

Content of the Report

2	Topics	
2.1	Technical and operational	14
2.2	Injection of CO ₂ into highly depleted gas fields and aquifers	30
2.3	Pipeline network safety	
2.4	Business models	35
2.5	Marine transportation	36
2.6	Use of existing natural gas pipelines for CO ₂ transportation	41
2.7	Legal and regulatory considerations	45
2.8	Case studies	47
2.9	Stranded emitters: Onshore transport, truck and rail	55

zep

Open Questions that Require Action / Research

- Demonstrate the feasibility of industrial CO₂ transport networks as soon as possible to gain technical experience and to strengthen confidence
- Accurate dynamic flow modelling (incl. phase distribution / compositions) along the whole pipeline is important for safe and economic design and operation
- Strategies for CO₂ injection into (low pressure) depleted oil and gas fields need to be investigated further
- The use of existing natural gas pipelines and offshore platforms can be an attractive option for the development of CO₂ networks
- Economic solutions for reliable fracture control need further investigations

Open Questions that Require Action / Research

- Monitoring and control requires new types of (composition) sensors
- Accurate / traceable flow metering is critical in particular in two phase flow
- Design of large CO₂ tankers (ships) requires further work and new standards
- Uncertainty and complexity of property models for liquid transport of CO₂ (CO₂-rich mixtures) requires further work
- Development of appropriate business models for transportation infrastructure is a key requirement for successful rollout
- The current legal situation is not well developed for the installation and operation of CO₂ pipeline networks, in particular if networks are transnational

Synergies / Competition to Hydrogen Transport

- Demonstrate the feasibility of industrial CO₂ transport networks as soon as possible to gain technical experience and to strengthen confidence
- Accurate dynamic flow modelling (incl. phase distribution / compositions) along the whole pipeline is important for safe and economic design and operation
- Strategies for CO₂ injection into (low pressure) depleted oil and gas fields need to be investigated further
- The use of existing natural gas pipelines and offshore platforms can be an attractive option for the development of CO₂ networks
- Economic solutions for reliable fracture control need further investigations

Synergies / Competition to Hydrogen Transport

- Monitoring and control requires new types of (composition) sensors
- Accurate / traceable flow metering is critical in particular in two phase flow
- Design of large CO₂ tankers (ships) requires further work and new standards
- Uncertainty and complexity of property models for liquid transport of CO₂ (CO₂-rich mixtures) requires further work
- Development of appropriate business models for transportation infrastructure is a key requirement for successful rollout
- The current legal situation is not well developed for the installation and operation of CO₂ pipeline networks, in particular if networks are transnational

Interdependencies in the Development of Hydrogen and CCS Infrastructure

Thank You For Your Patience!

Source: ACOShip Proposal / http://ec.europa.eu/energy/infrastructure/transparency_platform/map-viewer/main.html

EERA-CCS Subproject Transport

Steering Committee Meeting EERA-FCH – October 28, 2020

CO₂ Purity and Quality, Techno-Economic Assessment

- CO₂ quality is highly relevant for pipeline integrity and operation
- Impurities result from burned fuel and from capture process
- Extreme demands on purity become an economic problem
- In transport networks a complex mix of impurities is to be expected (different fuels and different capture technologies)
- Chemical reactions may form impurities present in none of the primary streams
- Quality control becomes an issue under theses conditions
- Knowledge on phase equilibria and chemistry of flows is mandatory to determine economically optimal solutions

Monitoring of Impurities

- Online monitoring of impurities is essential for transport networks fast response essential if limits are exceeded by one source
- Limits for non-condensable gases are rather high, probably no big deal
- Components like O₂, SO₂, H₂S at < 10 ppm (in some definitions < 1 ppm) are difficult to measure with available technology
- Measurements usually at low pressure; expansion may lead to two phase systems with largely different concentration of impurities in both phases
- Residuals of amines or other capture agents may react in the flow even difficult to tell what kind of impurities to search for
- In two phase flows monitoring of impurities becomes an even bigger challenge

Flow Metering

- In transport networks flow metering becomes a fiscally relevant task
- Involved taxes and avoidance of allocation errors result in high, but not yet clearly defined (and internationally harmonized) demands on accuracy
- In principal orifice plates, ultrasonic time of flight, and Coriolis meters are considered suitable for flow metering in single phase flows
- None of the methods is suitable for all applications
- None of the methods is suitable for two-phase flow
- Orifice plates and time of flight methods require accurate knowledge of density and acoustic properties
- Large scale facilities for testing and calibration of flow meters are missing

Thermophysical Properties

- High demands on accuracy in density (and speed of sound) for flow metering
- Qualitatively correct description of phase envelopes not only for noncondensable components but for all relevant impurities
- Consideration not only of VLE, but also of LLE and VLLE
- Thermal effects in injections with fluctuating pressure / flow rates require half way accurate knowledge of caloric properties as well
- Solid formation becomes an issues when streams are expanded
- Consideration of ice, dry ice and hydrates

Thermophysical Properties

European Energy Research Alliance CCS - Carbon Capture and Storage

Transient Flow Modelling

- Transient flow modelling essentially established for single phase flow in point to point connections between power plant and storage site
- In transport networks higher amount of fluctuations, composition of the CO₂rich mixture changes over time and location in the network
- Two phase flow may not always be avoidable, but needs to be avoided at metering stations and at points where the composition is monitored
- Accurate model of flows in the transport network is essential to ensure stable operation when additional suppliers / storage sites are connected

Injection in Depleted Gas-Fields and Aquifers

- Injection in aquifers is essentially state of the art for transport, but needs to be extended to much bigger scale
- Injection in depleted gas fields results in initially low backpressure, which increases during operation
- Existing equipment may partially be used (pipelines, platforms, ...)
- Conversion of natural-gas pipelines to CO₂-rich mixtures is not impossible, but requires very detailed analysis of mechanical strength, corrosion issues, health and safety issues and so on
- Permission for reuse will depend on detailed analysis in every single case, no general statements possible

Pipeline Network Safety

- Running ductile fracture still is an issue
- Current regulation requires prove by experimental tests for pipeline designs that were not tested before
- Established models do not describe pipelines containing CO₂-rich mixtures
- Advanced models would ease reuse of existing pipelines and planning of transport networks
- Corrosion remains an issue for transport networks for reasons discussed avoiding the formation of corrosive phases is more difficult
- Permission process involves a number of points that are not entirely technical

 safety assessment may become a stepping stone
 merecome

Business Models

- Business models are central for the development of transport networks
- Market will likely be monopolistic Regulated Asset Base or Public Ownerships are the most often discussed options for pipelines
- Discussion focusses on large transport pipelines so far
- Very little consideration of ...
 - \circ Ship transport to hubs or to offshore CO₂ sinks (EOR)
 - Low pressure grids for collecting CO₂ from remote sources
 - Truck or rail transport for collecting CO₂ from remote sources

Marine Transportation

- Small scale (1000 2000 to) ship transport is state of the art for decades
- Transport as saturated liquid at rather high temperature and pressure
- For large scale transport lower pressure and temperature are considered ideal
- Issues like allowable impurities at low temperature need to be addressed
- Existing codes (LPG / LNG) do not cover LCO₂ carriers density and pressure are out of spec.
- Loading and unloading equipment can likely be adapted to large scale LCO₂

Stranded Emitters

- The contribution of small emitters to the total CO₂ emissions of the EU is not negligible – emitters < 500 kT/a need to be included to meet targets
- Different options for transport, largely depending on geographical aspects: gas phase pipelines at relatively low pressure, transport by ship, truck or rail
- Economy of scale makes CO₂ processing particularly expensive
- Hub based concepts with central processing seem economically attractive (of course capture itself needs to remain local)
- Transport of unprocessed CO₂ to hubs raises several technical questions

Legal and Regulatory Considerations

- London Protocol hindered export of CO₂ for off-shore storage
- By now provisional amendment from 2009 can be applied in this case
- ⇒ Problems can be solved, but a strong political will is required
- National legislation for CO₂ pipelines is not existent in most European countries
- Regulative approaches are inconsistent
- Problems are to be expected with regard to permissions for transnational pipelines
- European harmonization of legislation / regulation becomes urgent

Conclusion

After all, the transportation of CO_2 rich mixtures in 'point to point' type pipelines and also in transportation networks based on pipelines and ships is technically feasible without any doubt. However, in particular transportation networks designed, approved, build and operated based on current knowledge cannot be optimised in many regards due to limited technical experience and incomplete scientific knowledge. Ultimately, these limitations result in increased costs for infrastructure and operation. First movers have to be compensated for these disadvantages and focussed research and development has to be strengthened to come to commercially optimal solutions as soon as possible.

